/*
取下前n个环步骤是先取下前n-2个环,再取下第n个环,再还原前n-2个环,最后取下前n-1个环。
递推公式:f(n) = f(n-1) + 2 * f(n-2) + 1
构造矩阵:
Fn(1,3) = |f(n) f(n-1) 1|
F2(1,3) = |f(2) f(1) 1| = |2 1 1|
|1 1 0|
A(3,3) = |2 0 0|
|1 0 1|
Fn = F2 * A^(n-2)
*/
#include "Mat.h"
#include <iostream>
using namespace std;
int a[3][3] = {1,1,0,2,0,0,1,0,1};
int main()
{
Mat A(3,3),F(1,3);
int s, i, j;
mod = 200907;
while(cin>>s && s)
{
if(s < 3)
{
cout<<s<<endl;
continue;
}
A.clear();
F.clear(2);F.s[0][0] = 2;
for(i = 0; i < 3; i ++)
{
for(j = 0; j < 3; j++)
A.s[i][j] = a[i][j];
}
A.Er_work(s-2);
F.Multiply(A);
cout<<(int)F.s[0][0]<<endl;
}
return 0;
}